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Using a very simple trial function and unper turbed electron densities calcu- 
lated by a new procedure,  the f requency-dependent  dipole polarizability 
o~ (oJ) of Ne, Ar,  Kr and Xe has been calculated in the range 0 -< ~o -< 0.45 a.u., 
by a Karp lus -Kolker - type  var iat ion-perturbat ion method.  Results progress- 
ively worsen for larger systems so that, for Xe, a(0)  is only 75% of the 
experimental  value. Probable  reasons for this are discussed. 
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1. Introduction 

Dynamic  polarizability of a many-elect ron system is a measure of its response 
to an external t ime-dependent  oscillating electric field and is of considerable 
value in the study of optical propert ies  of mat ter  as well as long-range interactions 
between molecular systems [1-3]. We have recently proposed [4] a Karp lus -  
Kolker- type [5] var iat ion-perturbat ion (VP) method and a hydrodynamical  
method for calculating the dynamic (frequency-dependent)  polarizability, based 
on a t ime-dependent  extension [6] of the H o h e n b e r g - K o h n - S h a m  (HKS) 
density-functional theory [7] and its connection [6, 8] with the hydrodynamical  
analogy to quantum mechanics. Our calculated static (zero-frequency) dipole 
polarizability for He  a tom was numerically bet ter  than other density-functional 
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calculations [9] of the same quantity. We have also proposed [10] a new nonlinear 
second-order differential equation for the direct calculation of electron density 
in many-electron systems; this gives results in satisfactory agreement with the 
Hartree-Fock ground-state energies and radial densities for Ne, Ar, Kr and Xe 
atoms. 

In view of the well-known predictive and interpretive significance of electron 
density [11], we employ a similar theme in the present work as in our earlier 
paper [4], but develop the VP method in terms of the net 3-D density rather 
than the individual (e.g. HKS) orbitals. As an illustration, we calculate the 
frequency-dependent dipole polarizabilities of the atoms Ne, Ar, Kr and Xe 
using the densities calculated by ourselves [10]. 

After a brief review of our density calculation scheme in Section 2, we present 
the VP method employing this electron density in Section 3. Section 4 outlines 
the method of calculation while Section 5 discusses the reasons for unsatisfactory 
results in case of the larger atoms. 

2. A Time-Dependent Density Equation 

Using the relation between the correlation function [12] and the one- and 
two-particle density matrices, within the Hartree-Fock approximation, it has 
been shown [10, 13] that the kinetic-energy functional TIp] of the HKS energy 
functional E[p ] = TIp ] + Vne [p ] "4- Vee [P ] -t'- Exc [p  ], can be written 1 as a sum of the 
full Weizs/icker term and a modified Thomas-Fermi (TF) term involving a 
variable correction factor f(r), viz., 

1 Vp .VPdr+CTFI f ( r )pS /adr ,  rLo]--g I--- ? - -  (1) 

where C-rF = 3(3"n'2)2/3. Variational minimization of E[p] with respect to p, 
subject to the normalization constraint 

I p  dr = (2) (r) N, 

N being the number of electrons, leads to the one-particle equation 

[ --  l V 2  q-/.)eff]~ = /.L(~, (3)  

where/x is the chemical potential and 

p(r') 
vo~(r) = v~r(r) + J d r ' +  vxc(r ; p) + ~CTFg(r)p 5 2/3 

p (r) -- I~ (r)l 2- 

(4) 

(5) 

1 Atomic units used throughout this paper. 
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Here VN(r) is the potential due to the nuclei, vxc (=-6Exc/6p) is the exchange- 
correlation potential and the function g(r) is related to f (r) .  Also, the N- 
representability conditions [14] for p (r) are automatically satisfied. 

For the four closed-shell atoms 2, Ne, Ar, Kr and Xe, the forms of f(r)  and g(r) 
have been obtained through Hartree-Fock wave functions [15] and then fitted 
by gaussian sums as 

f(r)  = ~ ai exp [-bi(r  --ri) 2] (6) 
i=1 

g(r) = ~ ai exp [-c i (r-r i )2] .  (7) 
i=1 

The peak heights {al} and the peak positions {ri} have been expressed as functions 
of the atomic number Z and the number n of electronic shells. The exponents 
{hi} and {ci} are adjusted to obtain satisfactory results for energy and density. 
With a suitable g(r), Eq. (3) has been numerically solved for each atom by a 
finite difference method after linearization. 
The calculations are easy to perform and the ground-state energies as well as 
radial densities agree quite nicely with the corresponding Hartree-Fock results. 
The function 4, (r) in Eq. (3) may be interpreted as a 3-D wave function for a 
many-electron system. 

Now, in presence of an oscillating external t ime-dependent potential, 
--ioJt 

Vext(r, t)=vex(r)[ei '~ ], (8) 

the time-dependent version of Eq. (3) can be written as [6] 

tO 1 2 
[ -- ~V + Vex t + Veff ] t  0 = i O_, (9) 

where veee is now time-dependent through p(r, t) = ]tO(r, t)f. Eq. (9) serves as the 
basis for the VP method developed in the following section. 

In the absence of an external t ime-dependent potential, Eq. (9) becomes 

[ lV2..~_ 0 0 Off/0 ( 1 0 )  
ve~]to = i at ' 

where the unperturbed function, t0~ t )=  qS~ -~~ e , is assumed to be known, 
even if approximately. 

3. Karplus-Kolker-Type Variation-Perturbation Method for Dynamic Dipole 
Polarizability 

In presence of a uniform oscillating electric field, Fo (e i,ot+ e-i,ot), Vext is written 
a s  

Vext(r, t )  = r �9 F o ( e  i,ot + e - i~  (11) 

2 For a c losed-she l l  a tom ,  the  p r o b l e m  can be  t rea ted  as a 1 - D  case.  



212 

Taking the field direction as the z-axis, 

V~x,(r, t) = l?oFo, 

where 

rVo(r, t )=  Vo(r) [e i~ +e  -i'~ 

Vo(r) = r cos 0. 

Now, the t ime-dependent  Eq. (9) is simply 

0g, h~=i~ ,  

where 

h = ho + Avef~(r, t) + Vext(r, t) 

o r AVert(r, t) = veer(r, t)-- Veff ( ) .  
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(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

For a small perturbation, the perturbed wave function may be taken as 

4J(r, t )=  ~0(r, t)+tPl(r, t)Fo. (18) 

Substituting Eq. (18) into Eq. (15), the zero- and first-order expressions can be 
gathered as: 

( h o - i ~ t )  tPo = 0 (19) 

( h o - i  ~t) gq +[AvX~(r, t)+ Vo(r,t)]tPo=O, (20) 

where 

Aveff(r, t)= 1 Avert (r, t)Fo, (21) 

retaining terms only up to first order, as done in Eq. (18). The explicit form of 
h v ~  (r, t), within the local density approximation, is given by Eq. (28). 

The perturbed density, up to first order, is 

p (r, t) = po(r) + 8p (r, t)Fo, (22) 

where 

6p = 2 Re {tpOt~l}. (23) 

Since ~1 is arbitrary to the extent of any added multiple of g*o, without loss of 
generality one can employ the intermediate normalization 

(~(r, t)l&o(r, t ) )=  1 (24) 

i.e. 

(Ol(r, t)lOo(r, t)) = O. (25) 
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Because of the use of a harmonic perturbation, Eq. (12), the t ime-dependent 
Eq. (20) can now be transformed into a t ime-independent equation involving 
frequency. Writing Eq. (20) in the form 

01 + [Av eel (r, t) + Vo(r) {e ~o,t + e-'~t}]e-i~176 = 0, (26) 

where ~Oo = eo/h = eo (in a.u.), it becomes clear [5, 16] that the essential part of 
01(r, t) has a t ime-dependence of the form 

t~x(r, t) = xx(r,  09) e i(~176176 +xl(r, -to) e -i(~176176 (27) 

while Av~  (r, t) has the following t ime-dependence [4]: 

1 ~--- AV-leff eiOn q_ -1  e --iwt Ave, (r, t) (r, oJ) Av~(r ,  -oJ) (28) 

Substitution of Eqs. (27) and (28) into Eq. (26) yields the pair of t ime-independent 
coupled equations 

+ EAv e~ (r, w ) +  Vo(r)]4~o = 0 (29) (ho-eo+W)xl(r ,  w) -1 

(ho -  eo - oJ)x 1 (r, -oJ) + [A~51ff (r, - w )  + Vo(r)]~bo = 0, (30) 

Using the solutions xx(r, • of Eqs. (29) and (30), the frequency-dependent  
(dynamic) dipole polarizability can be calculated as [5] 

a (w) : Re  {(x l(r, w)] Vol~bo) + (x l(r, -oJ)] Vo]~bo)}. (31) 

Now, Eqs. (29) and (30) may be solved variationally [5, 17] by replacing them 
with the Euler equations 

6L(+oJ) = 0 (32) 

8L( -w)  = O, (33) 

where the functionals L(• are given by 

L(• = (Xl(r, •  eo• [xl(r, •  

+ 2 Re  {(xl(r, • (r, •  + Vo(r)l'4,o)}. (34) 

The extremum of L(+~o) is an absolute minimum for all positive r and that of 
L(-oo) is an absolute minimum for r < (e 1 -  e o), the first excitation frequency 
[5]. The functions xl(r, •  can be determined by extremizing the functionals 
L(•  with respect to trial functions ~l(r, • subject to the orthogonality 
requirements [2] 

Re  {(4~ol)~1(r, +w))} = 0. (35) 

4. Method of Calculation 

In order to minimize the functional L(• the trial functions )~l(r, •  are 
chosen as 

)~l(r, + w ) =  f• (36) 
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where the new trial functions f•  • can be taken as real since the 
perturbation is real Hermitian. Using Eq. (36), Eq. (34) becomes 

= <r .V • o, (f• 

+ 2 Re {(/•162177 + Volr (37) 

L(• can now be minimized with respect to f:~ or, more specifically, to certain 
adjustable parameters embedded in f:~. 

Consider a 1-D situation, e.g. closed-shell atoms. The trial functions may be 
chosen as 

M 
f• = r cos 0 E CK• rK-1, (38) 

K = I  

where CK• Minimizing the functional in Eq. (37) with respect to 
{CK~} leads to the set of linear equations 

M 

Y~ Am•177 = BK ; K = 1 . . . . .  M, (39) 
/=1 

where Am• and BK are combinations of certain matrix elements in terms of r 
The solutions of (39) yields the coefficients {CK• The dipole polarizability is 
now given by 

a (w) = Re {<Coil+ Vo[r + <Coil Vo[r 
M 

= ~ ~ (r~C+I)(CK++CK-), (40) 
K = I  

where 

(r") =4~- f p(r)rnr z dr. (41) 

The value of M depends on the required convergence. In the present work, 
M = 6 for all the four atoms studied. This ensures convergence of o~ (oJ) up to 
the second decimal place. 

5. Results and Discussion 

We have calculated a(w) for the range 0-<oJ <0 .45  a.u. for Ne, Ar, Kr and Xe 
in Table 1. Table 2 compares our results for a (0) with those of other workers. 
While a (0) for Ne and Ar is overestimated, those for the other two atoms are 
progressively underest imated in our calculations. 

Apart  from the approximate forms of the various functionals used, there are 
several likely reasons for these trends. First, the overestimation of a(0)  for 
relatively smaller systems like He and Ne is a feature of local density approxima- 
tions and is less serious for larger systems. The underestimation of ~(~o) is 
essentially due to the variational calculation with a trial function chosen on the 
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Table 1. Calculated values of dynamic (frequency-dependent) dipole polarizabilities of Ne, Ar, Kr 
and Xe; all values are in atomic units (1 a.u. of polarizability = 47reoa 3 = 0.164878 x 10 -40 C 2 m 2 U1; 
1 a.u. of frequency = h/mea 2 = 4.1341 x 1016 rad sec -1) 

Ne Ar Kr Xe 

Frequency Present Ref. Ref. Ref. Present Ref. Present Ref. Present Ref. 
(w) work [18] a [20] [21] work [18] a work [18] a work [18] a 

0.00 4.12 2.37 2.67 12.71 14.40 20.66 
0.05 4.15 2.37 12.79 14.48 20.78 
0.10 4.20 2.39 2.69 13.06 14.74 21.21 
0.15 4.30 2.42 13.54 15.21 21.99 
0.20 4.46 2.80 2.46 2.77 14.36 12.51 16.00 19.68 23.33 
0.25 4.69 2.88 2.51 15.76 13.50 17.31 21.87 25.70 
0.30 5.05 2.99 2.58 2.91 18.58 15.22 19.75 27.20 30.77 
0.35 5.64 3.14 2.68 28.10 18.40 26.23 54.82 
0.40 6.77 2.81 3.14 
0.45 10.69 2.98 

35.15 
44.20 
95.52 

a Quoted in Ref. [19]. 

Table 2. Static dipole polarizabilities (a.u.) of Ne, Ar, Kr and Xe (see also Table 1) 

Ne Ar Kr Xe Ref. a 

Expt. 

4.12 12.71 14.40 20.66 Present work 
8.2 14.0 21.1 25.5 22 

13.3 19.4 27.4 31.2 23 
14.5 19.3 24.8 27.7 24 
- -  10.53 23.01 24.49 25 

8.17 13.50 21.26 25.51 26 
2.43 9.45 13.49 20.24 27 
2.97 11.67 17.41 28.0 9a 
3.00 11.8 17.7 28.3 9b 
2.90 11.74 17.54 27.8 9c 
2.70 11.1 16.7 27.4 28a 
2.66 11.1 16.75 27.32 28b 

a Refs. [22-27] are statistical model calculations 

b a s i s  of  E q s  (36)  a n d  (38) .  S i n c e  o u r  c a l c u l a t e d  6 o  is c lo se  to  t h e  H a r t r e e - F o c k  

r e s u l t  a n d  d o e s  n o t  h a v e  a n o d e ,  t h i s  b y  i t se l f  is n o t  a m a j o r  r e a s o n  fo r  t h i s  

u n d e r e s t i m a t i o n .  B e c a u s e  a l i m i t e d  v a r i a t i o n a l  c a l c u l a t i o n  wil l  g ive  a l o w e r  

v a l u e  fo r  a (oJ), w e  f ee l  t h a t  t h e  m a i n  r e a s o n s  a r e  t h e  f o l l o w i n g :  

(a) Considerable loss in variational flexibility in  o u r  t r i a l  f u n c t i o n ,  d u e  to  t h e  

u s e  of  o n l y  o n e ,  i .e. a n  a v e r a g e ,  f~(r) f o r  t h e  e n t i r e  a t o m .  S e v e r a l  H a r t r e e - F o c k  

p r o c e d u r e s  [2,  17 ]  h a v e  u s e d  s e p a r a t e  f ~  f o r  s e p a r a t e  o r b i t a l s  of  t h e  s a m e  a t o m .  

H e r e ,  w e  s o l v e  o n l y  2 i n s t e a d  of  2 N  e q u a t i o n s .  
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(b) Neglect of continuum contribution. The trial function chosen by us, viz. Eq. 
(38), poorly describes the contribution from continuum states, which becomes 
very significant for larger noble gas atoms, even at zero frequency (see, e.g. Ref. 
[29]). 

It may be argued that one should resort to a numerical solution of Eqs. (29) 
and (30), instead of a variational one. However, since this involves a separate 
solution at each frequency, this would be quite tiresome for relatively larger 
systems. In this regard, we feel that a variational approach holds greater promise. 
However, here the crux of the problem lies in our ability to make a rather 
delicate choice of trial functions which will include the right amount of flexibility 
and the requisite continuum character. We are at present trying to devise such 
a trial function. 
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